Finite-volume approximation of the invariant measure of a viscous stochastic scalar conservation law
نویسندگان
چکیده
Abstract We study the numerical approximation of invariant measure a viscous scalar conservation law, one-dimensional and periodic in space variable stochastically forced with white-in-time but spatially correlated noise. The flux function is assumed to be locally Lipschitz continuous have at most polynomial growth. scheme we employ discretizes stochastic partial differential equation (SPDE) according finite-volume method split-step backward Euler time. As first result, prove well posedness as existence uniqueness an for both semidiscrete scheme. Our main result then convergence measures discrete approximations, time steps go zero, towards SPDE, respect second-order Wasserstein distance. investigate rates theoretically, case where globally small constant, numerically Burgers equation.
منابع مشابه
the pathology of historical texts translation: a study of persian translations of 7th volume of cambridge history of iran
ترجمه با گسترش زبان آغاز شده و اهمیت آن روز به روز افزایش می یابد، و برای اولین بار به عنوان شاخه ای از دانش و روشی برای انتقال علوم، فرهنگ و تجربه در در دوره قاجار در ایران آغاز شد. در حقیقت متون تاریخی از اولین متونی هستند که در ایران ترجمه شدند چرا که به سیاستمداران آن دوره کمک می کردند تا به علل موفقیت جهان غرب و پیشرفت هایشان در طول تاریخ پی ببرند، بنابراین به تدریج ترجمه این گونه متون رون...
15 صفحه اولConvergence of Thin Film Approximation for a Scalar Conservation Law
In this paper we consider the thin film approximation of a one-d scalar conservation law with strictly convex flux. We prove that the sequence of approximate solutions converges to the unique Kružkov solution.
متن کاملError estimate for the upwind finite volume method for the nonlinear scalar conservation law
In this paper we study the error estimate of the upwind first order finite volume scheme applied to scalar conservation laws. As a first step we also consider the case of a linear equation with space variable coefficients in conservation form. We prove that indeed these schemes lead to a first order error estimate. This work follows our previous paper [2] where we have introduced, in the contex...
متن کاملA Bhatnagar-Gross-Krook Approximation to Stochastic Scalar Conservation Laws
and study its approximation in the sense of Bhatnagar-Gross-Krook (a BGKlike approximation for short). In particular, we aim to describe the conservation law (1.1) as the hydrodynamic limit of the stochastic BGK model, as the microscopic scale ε goes to 0. The literature devoted to the deterministic counterpart, i.e. corresponding to the situation Φ = 0, is quite extensive (see [1], [11], [15],...
متن کاملInvariant Manifolds and the Stability of Traveling Waves in Scalar Viscous Conservation Laws
The stability of traveling wave solutions of scalar, viscous conservation laws is investigated by decomposing perturbations into three components: two far-field components and one near-field component. The linear operators associated to the far-field components are the constant coefficient operators determined by the asymptotic spatial limits of the original operator. Scaling variables can be a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ima Journal of Numerical Analysis
سال: 2021
ISSN: ['1464-3642', '0272-4979']
DOI: https://doi.org/10.1093/imanum/drab049